781 research outputs found

    Source Mergers and Bubble Growth During Reionization

    Full text link
    The recently introduced models of reionization bubbles based on extended Press-Schechter theory (Furlanetto, Zaldarriaga & Hernquist 2004) are generalized to include mergers of ionization sources. Sources with a recent major merger are taken to have enhanced photon production due to star formation, and accretion onto a central black hole if a black hole is present. This produces a scatter in the number of ionized photons corresponding to a halo of a given mass and a change in photon production over time for any given halo mass. Photon production histories, bubble distributions, and ionization histories are computed for several different parameter and recombination assumptions; the resulting distributions interpolate between previously calculated limiting cases.Comment: 44 pages, 11 figures, version to appear in MNRAS. Some discussion of case with WMAP parameters and expanded explanation

    A practical theorem on using interferometry to measure the global 21-cm signal

    Get PDF
    The sky-averaged, or global, background of redshifted 2121 cm radiation is expected to be a rich source of information on cosmological reheating and reionizaton. However, measuring the signal is technically challenging: one must extract a small, frequency-dependent signal from under much brighter spectrally smooth foregrounds. Traditional approaches to study the global signal have used single antennas, which require one to calibrate out the frequency-dependent structure in the overall system gain (due to internal reflections, for example) as well as remove the noise bias from auto-correlating a single amplifier output. This has motivated proposals to measure the signal using cross-correlations in interferometric setups, where additional calibration techniques are available. In this paper we focus on the general principles driving the sensitivity of the interferometric setups to the global signal. We prove that this sensitivity is directly related to two characteristics of the setup: the cross-talk between readout channels (i.e. the signal picked up at one antenna when the other one is driven) and the correlated noise due to thermal fluctuations of lossy elements (e.g. absorbers or the ground) radiating into both channels. Thus in an interferometric setup, one cannot suppress cross-talk and correlated thermal noise without reducing sensitivity to the global signal by the same factor -- instead, the challenge is to characterize these effects and their frequency dependence. We illustrate our general theorem by explicit calculations within toy setups consisting of two short dipole antennas in free space and above a perfectly reflecting ground surface, as well as two well-separated identical lossless antennas arranged to achieve zero cross-talk.Comment: 17 pages, 6 figures, published in Ap

    Lyman-α polarization intensity mapping

    Get PDF
    We present a formalism that incorporates hydrogen Lyman-alpha (Lyα) polarization arising from the scattering of radiation in galaxy halos into the intensity mapping approach. Using the halo model, and Lyα emission profiles based on simulations and observations, we calculate auto and cross power spectra at redshifts 3 ≤ z ≤ 13 for the Lyα total intensity, I, polarized intensity, P, degree of polarization, Π=P/I, and two new quantities, the astrophysical E and B modes of Lyα polarization. The one-halo terms of the Π power spectra show a turnover that signals the average extent of the polarization signal, and thus the extent of the scattering medium. The position of this feature depends on redshift, as well as on the specific emission profile shape and extent, in our formalism. Therefore, the comparison of various Lyα polarization quantities and redshifts can break degeneracies between competing effects, and it can reveal the true shape of the emission profiles, which, in turn, are associated to the physical properties of the cool gas in galaxy halos. Furthermore, measurements of Lyα E and B modes may be used as probes of galaxy evolution, because they are related to the average degree of anisotropy in the emission and in the halo gas distribution across redshifts. The detection of the polarization signal at z∼3–5 requires improvements in the sensitivity of current ground-based experiments by a factor of ∼10, and of ∼100 for space-based instruments targeting the redshifts z∼9–10, the exact values depending on the specific redshift and experiment. Interloper contamination in polarization is expected to be small, because the interlopers need to also be polarized. Overall, Lyα polarization boosts the amount of physical information retrievable on galaxies and their surroundings, most of it not achievable with total emission alone

    Spectral Line De-confusion in an Intensity Mapping Survey

    Get PDF
    Spectral line intensity mapping has been proposed as a promising tool to efficiently probe the cosmic reionization and the large-scale structure. Without detecting individual sources, line intensity mapping makes use of all available photons and measures the integrated light in the source confusion limit, to efficiently map the three-dimensional matter distribution on large scales as traced by a given emission line. One particular challenge is the separation of desired signals from astrophysical continuum foregrounds and line interlopers. Here we present a technique to extract large-scale structure information traced by emission lines from different redshifts, embedded in a three-dimensional intensity mapping data cube. The line redshifts are distinguished by the anisotropic shape of the power spectra when projected onto a common coordinate frame. We consider the case where high-redshift [CII] lines are confused with multiple low-redshift CO rotational lines. We present a semi-analytic model for [CII] and CO line estimates based on the cosmic infrared background measurements, and show that with a modest instrumental noise level and survey geometry, the large-scale [CII] and CO power spectrum amplitudes can be successfully extracted from a confusion-limited data set, without external information. We discuss the implications and limits of this technique for possible line intensity mapping experiments.Comment: 13 pages, 14 figures, accepted by Ap
    • …
    corecore